Copied to
clipboard

G = C4211D14order 448 = 26·7

11st semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4211D14, C14.152+ 1+4, D49(C4×D7), (C4×D4)⋊7D7, (D4×D7)⋊5C4, C4⋊C456D14, (D4×C28)⋊9C2, (C4×D28)⋊24C2, D2813(C2×C4), (D4×Dic7)⋊8C2, (C22×C4)⋊4D14, (C4×C28)⋊16C22, C22⋊C453D14, D28⋊C414C2, D14⋊C462C22, (C2×D4).245D14, C42⋊D711C2, C14.22(C23×C4), (C2×C14).89C24, C28.32(C22×C4), C4⋊Dic773C22, D14.8(C22×C4), Dic74D445C2, C2.3(D48D14), C2.3(D46D14), (C2×C28).587C23, Dic7⋊C464C22, (C22×C28)⋊36C22, C73(C22.11C24), (C4×Dic7)⋊11C22, C23.D748C22, Dic7.9(C22×C4), C22.32(C23×D7), (D4×C14).253C22, (C2×D28).258C22, (C22×Dic7)⋊8C22, (C23×D7).38C22, C23.168(C22×D7), (C22×C14).159C23, (C2×Dic7).201C23, (C22×D7).168C23, (C2×D4×D7).7C2, C4.32(C2×C4×D7), (C4×D7)⋊3(C2×C4), C7⋊D43(C2×C4), (C7×D4)⋊12(C2×C4), (C4×C7⋊D4)⋊40C2, C22.2(C2×C4×D7), (C2×C4×D7)⋊46C22, (C2×D14⋊C4)⋊34C2, C4⋊C47D714C2, C2.24(D7×C22×C4), (C7×C4⋊C4)⋊56C22, (D7×C22⋊C4)⋊27C2, (C22×D7)⋊8(C2×C4), (C2×C14).2(C22×C4), (C7×C22⋊C4)⋊63C22, (C2×C4).282(C22×D7), (C2×C7⋊D4).110C22, SmallGroup(448,998)

Series: Derived Chief Lower central Upper central

C1C14 — C4211D14
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — C4211D14
C7C14 — C4211D14
C1C22C4×D4

Generators and relations for C4211D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 1684 in 338 conjugacy classes, 151 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, D7, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C42⋊C2, C4×D4, C4×D4, C22×D4, C4×D7, C4×D7, D28, C2×Dic7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×D7, C22×C14, C22.11C24, C4×Dic7, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×C4×D7, C2×C4×D7, C2×D28, D4×D7, C22×Dic7, C2×C7⋊D4, C22×C28, D4×C14, C23×D7, C42⋊D7, C4×D28, D7×C22⋊C4, Dic74D4, C4⋊C47D7, D28⋊C4, C2×D14⋊C4, C4×C7⋊D4, D4×Dic7, D4×C28, C2×D4×D7, C4211D14
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C24, D14, C23×C4, 2+ 1+4, C4×D7, C22×D7, C22.11C24, C2×C4×D7, C23×D7, D7×C22×C4, D46D14, D48D14, C4211D14

Smallest permutation representation of C4211D14
On 112 points
Generators in S112
(1 8 43 50)(2 51 44 9)(3 10 45 52)(4 53 46 11)(5 12 47 54)(6 55 48 13)(7 14 49 56)(15 22 86 93)(16 94 87 23)(17 24 88 95)(18 96 89 25)(19 26 90 97)(20 98 91 27)(21 28 92 85)(29 36 72 79)(30 80 73 37)(31 38 74 81)(32 82 75 39)(33 40 76 83)(34 84 77 41)(35 42 78 71)(57 110 103 64)(58 65 104 111)(59 112 105 66)(60 67 106 99)(61 100 107 68)(62 69 108 101)(63 102 109 70)
(1 58 29 90)(2 59 30 91)(3 60 31 92)(4 61 32 93)(5 62 33 94)(6 63 34 95)(7 64 35 96)(8 65 36 97)(9 66 37 98)(10 67 38 85)(11 68 39 86)(12 69 40 87)(13 70 41 88)(14 57 42 89)(15 53 100 82)(16 54 101 83)(17 55 102 84)(18 56 103 71)(19 43 104 72)(20 44 105 73)(21 45 106 74)(22 46 107 75)(23 47 108 76)(24 48 109 77)(25 49 110 78)(26 50 111 79)(27 51 112 80)(28 52 99 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 61)(16 60)(17 59)(18 58)(19 57)(20 70)(21 69)(22 68)(23 67)(24 66)(25 65)(26 64)(27 63)(28 62)(43 71)(44 84)(45 83)(46 82)(47 81)(48 80)(49 79)(50 78)(51 77)(52 76)(53 75)(54 74)(55 73)(56 72)(85 108)(86 107)(87 106)(88 105)(89 104)(90 103)(91 102)(92 101)(93 100)(94 99)(95 112)(96 111)(97 110)(98 109)

G:=sub<Sym(112)| (1,8,43,50)(2,51,44,9)(3,10,45,52)(4,53,46,11)(5,12,47,54)(6,55,48,13)(7,14,49,56)(15,22,86,93)(16,94,87,23)(17,24,88,95)(18,96,89,25)(19,26,90,97)(20,98,91,27)(21,28,92,85)(29,36,72,79)(30,80,73,37)(31,38,74,81)(32,82,75,39)(33,40,76,83)(34,84,77,41)(35,42,78,71)(57,110,103,64)(58,65,104,111)(59,112,105,66)(60,67,106,99)(61,100,107,68)(62,69,108,101)(63,102,109,70), (1,58,29,90)(2,59,30,91)(3,60,31,92)(4,61,32,93)(5,62,33,94)(6,63,34,95)(7,64,35,96)(8,65,36,97)(9,66,37,98)(10,67,38,85)(11,68,39,86)(12,69,40,87)(13,70,41,88)(14,57,42,89)(15,53,100,82)(16,54,101,83)(17,55,102,84)(18,56,103,71)(19,43,104,72)(20,44,105,73)(21,45,106,74)(22,46,107,75)(23,47,108,76)(24,48,109,77)(25,49,110,78)(26,50,111,79)(27,51,112,80)(28,52,99,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,61)(16,60)(17,59)(18,58)(19,57)(20,70)(21,69)(22,68)(23,67)(24,66)(25,65)(26,64)(27,63)(28,62)(43,71)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(85,108)(86,107)(87,106)(88,105)(89,104)(90,103)(91,102)(92,101)(93,100)(94,99)(95,112)(96,111)(97,110)(98,109)>;

G:=Group( (1,8,43,50)(2,51,44,9)(3,10,45,52)(4,53,46,11)(5,12,47,54)(6,55,48,13)(7,14,49,56)(15,22,86,93)(16,94,87,23)(17,24,88,95)(18,96,89,25)(19,26,90,97)(20,98,91,27)(21,28,92,85)(29,36,72,79)(30,80,73,37)(31,38,74,81)(32,82,75,39)(33,40,76,83)(34,84,77,41)(35,42,78,71)(57,110,103,64)(58,65,104,111)(59,112,105,66)(60,67,106,99)(61,100,107,68)(62,69,108,101)(63,102,109,70), (1,58,29,90)(2,59,30,91)(3,60,31,92)(4,61,32,93)(5,62,33,94)(6,63,34,95)(7,64,35,96)(8,65,36,97)(9,66,37,98)(10,67,38,85)(11,68,39,86)(12,69,40,87)(13,70,41,88)(14,57,42,89)(15,53,100,82)(16,54,101,83)(17,55,102,84)(18,56,103,71)(19,43,104,72)(20,44,105,73)(21,45,106,74)(22,46,107,75)(23,47,108,76)(24,48,109,77)(25,49,110,78)(26,50,111,79)(27,51,112,80)(28,52,99,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,61)(16,60)(17,59)(18,58)(19,57)(20,70)(21,69)(22,68)(23,67)(24,66)(25,65)(26,64)(27,63)(28,62)(43,71)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(85,108)(86,107)(87,106)(88,105)(89,104)(90,103)(91,102)(92,101)(93,100)(94,99)(95,112)(96,111)(97,110)(98,109) );

G=PermutationGroup([[(1,8,43,50),(2,51,44,9),(3,10,45,52),(4,53,46,11),(5,12,47,54),(6,55,48,13),(7,14,49,56),(15,22,86,93),(16,94,87,23),(17,24,88,95),(18,96,89,25),(19,26,90,97),(20,98,91,27),(21,28,92,85),(29,36,72,79),(30,80,73,37),(31,38,74,81),(32,82,75,39),(33,40,76,83),(34,84,77,41),(35,42,78,71),(57,110,103,64),(58,65,104,111),(59,112,105,66),(60,67,106,99),(61,100,107,68),(62,69,108,101),(63,102,109,70)], [(1,58,29,90),(2,59,30,91),(3,60,31,92),(4,61,32,93),(5,62,33,94),(6,63,34,95),(7,64,35,96),(8,65,36,97),(9,66,37,98),(10,67,38,85),(11,68,39,86),(12,69,40,87),(13,70,41,88),(14,57,42,89),(15,53,100,82),(16,54,101,83),(17,55,102,84),(18,56,103,71),(19,43,104,72),(20,44,105,73),(21,45,106,74),(22,46,107,75),(23,47,108,76),(24,48,109,77),(25,49,110,78),(26,50,111,79),(27,51,112,80),(28,52,99,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,61),(16,60),(17,59),(18,58),(19,57),(20,70),(21,69),(22,68),(23,67),(24,66),(25,65),(26,64),(27,63),(28,62),(43,71),(44,84),(45,83),(46,82),(47,81),(48,80),(49,79),(50,78),(51,77),(52,76),(53,75),(54,74),(55,73),(56,72),(85,108),(86,107),(87,106),(88,105),(89,104),(90,103),(91,102),(92,101),(93,100),(94,99),(95,112),(96,111),(97,110),(98,109)]])

94 conjugacy classes

class 1 2A2B2C2D2E2F2G2H···2M4A···4J4K···4T7A7B7C14A···14I14J···14U28A···28L28M···28AJ
order122222222···24···44···477714···1414···1428···2828···28
size1111222214···142···214···142222···24···42···24···4

94 irreducible representations

dim11111111111112222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C4D7D14D14D14D14D14C4×D72+ 1+4D46D14D48D14
kernelC4211D14C42⋊D7C4×D28D7×C22⋊C4Dic74D4C4⋊C47D7D28⋊C4C2×D14⋊C4C4×C7⋊D4D4×Dic7D4×C28C2×D4×D7D4×D7C4×D4C42C22⋊C4C4⋊C4C22×C4C2×D4D4C14C2C2
# reps1112211221111633636324266

Matrix representation of C4211D14 in GL6(𝔽29)

100000
010000
0000280
0000028
001000
000100
,
1200000
0120000
000100
001000
000001
000010
,
0190000
3260000
000010
000001
001000
000100
,
3190000
24260000
000010
0000028
001000
0002800

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,28,0,0,0,0,0,0,28,0,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,3,0,0,0,0,19,26,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[3,24,0,0,0,0,19,26,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,1,0,0,0,0,0,0,28,0,0] >;

C4211D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{11}D_{14}
% in TeX

G:=Group("C4^2:11D14");
// GroupNames label

G:=SmallGroup(448,998);
// by ID

G=gap.SmallGroup(448,998);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,1123,80,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽